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1. INTRODUCTION

The Fox-Wright Psi function p	q[z] and its normalization p	
�

q[z] are hypergeo-

metric functions whose series representations are given by

p	q

2
64 (�1; A1); : : : ; (�p; Ap);

(�1; B1); : : : ; (�q; Bq);
z

3
75 = 1X

n=0

pY
k=1

�(�k +Akn)

qY
k=1

�(�k +Bkn)

zn

n!

p	
�

q

2
64 (�1; A1); : : : ; (�p; Ap);

(�1; B1); : : : ; (�q; Bq);
z

3
75 =

�(�1) : : :�(�q)

�(�1) : : :�(�q)
p	q

2
64 (�1; A1); : : : ; (�p; Ap);

(�1; B1); : : : ; (�q; Bq);
z

3
75

(1:1)

where �(z) is the Gamma function. Thus p	q[z] is a special case of Fox's H-function

H
m;n
k;` [z] (see e.g. [1, p. 50]) and p	

�

q[z] is a generalization of the familiar generalized

hypergeometric function pFq[z]:

pFq

2
64 �1; : : : ; �p;

�1; : : : ; �q;
z

3
75 =

1X
n=0

(�1)n : : : (�p)n

(�1)n : : : (�q)n

zn

n!
(1:2)

where the Pochhammer or shifted factorial symbol is de�ned by (a)n = �(a+n)=�(a)

for non-negative integers n. Clearly, if we set Ai = 1 (i = 1; : : : ; p), Bi = 1

(i = 1; : : : ; q) in Equation (1.1), p	
�

q[z] reduces to pFq[z] given by Equation (1.2).

In what follows we shall consider only the special case of the Fox-Wright function

where p = q = 1; thus

1	
�

1

2
64 (�;A);

(�;B);
z

3
75 = �(�)

�(�)

1X
n=0

�(�+An)

�(� +Bn)

zn

n!
: (1:3)

The importance of 1	
�

1[z] has recently been indicated by its connection with elemen-

tary number theory via Fermat's last theorem [2],[3] and in applied problems via the

solution of trinomial equations [4]. Thus it appears worthwhile studying and record-

ing further properties of the Psi function. To this end in the present paper we shall

show that 1	
�

1[z] reduces to a single generalized hypergeometric function when A and
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B assume integer values and that when these same parameters are rational num-

bers, 1	
�

1[z] reduces to a �nite sum of generalized hypergeometric functions. Then in

section 4 we shall give further applications relevant to the solution of trinomials in

general and in particular in section 6 to certain trinomials which arise in a problem

in information theory. In section 5 we give a reduction of a particular case of Meijer's

G-function.
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2. THE PSI FUNCTION FOR INTEGER A AND B

Assume that A and B in Equation (1.3) are positive integers. Clearly, for

A = B = 1

1	
�

1

2
64 (�; 1);

(�; 1);
z

3
75 = 1F1

2
64 �;

�;
z

3
75 (2:1)

so that in this case we have reduction to the conuent hypergeometric function 1F1[z]

which converges for all z in the �nite complex plane.

By using Gauss's multiplication theorem for the Gamma function it follows that

�[k(n+ �)] = �(k�)(kk)n(�)n

�
�+

1

k

�
n

: : :

 
�+

k � 1

k

!
n

(2:2)

for positive integers k and non-negative integers n. Thus since �(� +An) =

�[A(n+ �=A)] we obtain (cf. [5, p. 240, Eq. (I.26)])

�(� +An) = �(�)

�
�

A

�
n

�
� + 1

A

�
n

: : :

�
�+A� 1

A

�
n

(AA)n (2:3)

which when used together with Equation (1.3) yields

1	
�

1

2
64 (�;A);

(�;B);
z

3
75 = AFB

2
64 �

A
; : : : ; �+A�1

A
;

�
B
; : : : ; �+B�1

B
;

AAz

BB

3
75 (2:4)

for positive integers A and B. Obviously Equation (2.4) reduces to Equation (2.1)

when A = B = 1.

Similarly, for integer A � 1

�(� �An) =
�(�)

(1��
A
)n(

2��
A
)n : : : (

A��
A

)n[(�A)A]n
(2:5)

which follows from Equation (2.3) and the identity �(�� n)=�(�) = (�1)n=(1� �)n

with n replaced by An. Thus we have also from Equations (2.3), (2.5) and (1.3) for

A and B positive integers the following:

1	
�

1

2
64 (�;�A);

(�;�B);
z

3
75 = BFA

2
64

1��

B
; 2��

B
; : : : ; B��

B
;

1��
A
; 2��

A
; : : : ; A��

A
;

(�B)Bz

(�A)A

3
75 (2:6)
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1	
�

1

2
64 (�;�A) ;

(�;B) ;
z

3
75 = 0FA+B

"
1 � �

A
; : : : ;

A� �

A
;
�

B
; : : : ;

� +B � 1

B
;

z

(�A)ABB

#

(2:7)

1	
�

1

2
64 (�;A) ;

(�;�B) ;
z

3
75 = A+BF0

"
�

A
; : : : ;

�+A� 1

A
;
1� �

B
; : : : ;

B � �

B
;AA(�B)Bz

#
:

(2:8)

Note that the right hand side of Equation (2.8) diverges for z 6= 0 except when it

is a polynomial in which case it converges for all z. In addition, Equations (2.4),

(2.6)-(2.8) are valid for either A = 0 or B = 0 by deleting the parameters which

contain them.
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3. THE PSI FUNCTION FOR RATIONAL A AND B

Assume now that A and B are positive rational numbers. We may always assume

that A = a=k and B = b=k where the integer pairs a; k and b; k need not be relatively

prime. Thus

1	
�

1

2
64 (�; a=k);

(�; b=k);
z

3
75 =

�(�)

�(�)

1X
n=0

�(� + a
k
n)

�(� + b
k
n)

zn

n!

= 1 +
�(�)

�(�)

1X
n=1

�(� + a
k
n)

�(� + b
k
n)

zn

n!
: (3:1)

Now partition the positive integers n according to n = kp�q where q = 0; 1; : : : ; k�1

and p = 1; 2; 3; : : :. Calling for the moment the Psi function in Equation (3.1) S we

obtain

S = 1 +
�(�)

�(�)

k�1X
q=0

1X
p=1

�[�+ a(p� q=k)]

�[� + b(p� q=k)]

zkp�q

�(1 + kp � q)

= 1 +
�(�)

�(�)

k�1X
q=0

zk�q
1X
p=0

(zk)p

�(1 + k � q + kp)

�[a(p+ k�q
k

+ �
a
)]

�[b(p+ k�q

k
+ �

b
)]

= 1 +
�(�)

�(�)

kX
r=1

zr
1X
p=0

(zk)p

�[k(p + r+1
k
)]

�[a(p+ r
k
+ �

a
)]

�[b(p+ r
k
+ �

b
)]

(3.2)

where the latter result was obtained by reversing the order of summation by setting

r = k � q in the penultimate sum.

Referring to Equation (3.2) set

�1 =
r

k
+
�

a
; �2 =

r + 1

k
; �3 =

r

k
+
�

b
:

Then by using Equation (2.2) we have

�[a(p+ �1)]

�[k(p + �2)]�[b(p+ �3)]
=

�
aa

kkbb

�p �(a�1)

�(k�2)�(b�3)

�
(�1)p(�1 +

1

a
)p : : : (�1 +

a�1
a
)p

(�2)p(�2 +
1

k
)p : : : (�2 +

k�1
k
)p(�3)p(�3 +

1

b
)p : : : (�3 +

b�1
b
)p
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which we use together with Equation (3.2) to obtain for k = 1; 2; 3; : : :

1	
�

1

2
64 (�; a=k);

(�; b=k);
z

3
75 = 1 +

�(�)

�(�)

kX
r=1

�(�+ a
k
r)

�(� + b
k
r)

zr

r!

�a+1Fb+k

2
64 1; r

k
+ �

a
; r
k
+ �+1

a
; : : : ; r

k
+ �+a�1

a
;

r
k
+ �

b
; r
k
+ �+1

b
; : : : ; r

k
+ �+b�1

b
; r+1

k
; r+2

k
; : : : ; r+k

k
;

aa

bb

�
z

k

�k375 (3:3)

where a and b are non-negative integers, the result being valid for either a = 0 or

b = 0 by deleting the parameters which contain them.

Next, from Equation (2.5) since �(� � An) = �[�A(n � �=A)], it easily follows

that

�[�k(n+ �)] =
�(��k)

(�+ 1

k
)n(�+

2

k
)n : : : (�+

k
k
)n[(�k)k]n

(3:4)

where k is a positive integer and n is a non-negative integer. Equations (2.2) and (3.4)

may then be used together with Equation (3.2) to obtain for non-negative integers a

and b the following results for k = 1; 2; 3; : : ::

1	
�

1

2
64 (�;�a=k);

(�;�b=k);
z

3
75 = 1 +

�(�)

�(�)

kX
r=1

�(� � a
k
r)

�(� � b
k
r)

zr

r!

�b+1Fa+k

2
64 1; r

k
+ 1��

b
; : : : ; r

k
+ b��

b
;

r
k
+ 1��

a
; : : : ; r

k
+ a��

a
; r+1

k
; : : : ; r+k

k
;

(�b)b

(�a)a

�
z

k

�k375 (3:5)

1	
�

1

2
64 (�;�a=k) ;

(�; b=k) ;
z

3
75 = 1 +

�(�)

�(�)

kX
r=1

�(� � a
k
r)

�(� + b
k
r)

zr

r!

�1Fa+b+k

"
1;
r

k
+

1� �

a
; : : : ;

r

k
+
a� �

a
;
r

k
+
�

b
; : : : ;

r

k
+
� + b� 1

b
;
r + 1

k
; : : : ;

r + k

k
;
(z=k)k

(�a)abb

#

(3:6)

1	
�

1

2
64 (�; a=k) ;

(�;�b=k) ;
z

3
75 = 1 +

�(�)

�(�)

kX
r=1

�(� + a
k
r)

�(� � b
k
r)

zr

r!

�a+b+1Fk

2
64 1; r

k
+ �

a
; : : : ; r

k
+ �+a�1

a
; r
k
+ 1��

b
; : : : ; r

k
+ b��

b
;

r+1
k
; : : : ; r+k

k
;
aa(�b)b(z=k)k

3
75

:

(3:7)

7



We mention here that obviously results analogous to Equations (2.4), (3.3) etc. may

be obtained for p	
�

q[z] de�ned by Equation (1.1) when the Ai (i = 1; : : : ; p) and Bi

(i = 1; : : : ; q) are integers or rational numbers.

An interesting corollary may be obtained from either Equation (3.3) or (3.5) by

setting a = b, � = �; thus

exp z = 1 +
kX

r=1

zr

r!
1Fk

"
1;
r + 1

k
;
r + 2

k
; : : : ;

r + k

k
; (z=k)k

#

where k is a positive integer.

We conclude this section by noting that when k = 1, Equations (3.3), (3.5)-(3.7)

respectively reduce after simpli�cation to Equations (2.4), (2.6)-(2.8).
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4. APPLICATION TO TRINOMIAL EQUATIONS

Interest in the solution of algebraic trinomial equations originated evidently with

Lambert (1758). Numerous other investigators studied them, notably Lagrange (1770),

Heymann (1887), Capelli (1892), Ramanujan (circa 1903 and 1913), and Mellin

(1915). Berndt [6, p. 72, p. 307] gives a brief history of the subject while Belar-

dinelli [7, p. 30] presents a detailed account including an extensive bibliography.

Mellin's result [8] (see also [7, p. 37] and [9, p. 81]) may be given elegantly by

employing the Psi function as follows: for real x the positive root of the trinomial

equation

yN + xyN�Q � 1 = 0 ; N > Q > 0 (4:1)

is given by

y = 1	
�

1

2
64 ( 1

N
; N�Q

N
) ;

(1 + 1
N
; �Q
N
) ;

� x

3
75 (4:2)

where Q and N are real numbers and

jxj < (Q=N)�Q=N (1�Q=N)Q=N�1 � 2 : (4:3)

Belardinelli observed [7, p. 56] that when N and Q are integers, then the solution

y given by Equation (4.2) may be written as a sum of N generalized hypergeometric

functions de�ned by Equation (1.2). However his result is incorrect. Such a represen-

tation in terms of generalized hypergeometric functions may be obtained immediately

from Equation (3.7) by setting � = 1=N , � = 1 + 1=N , a = N � Q, b = Q, k = N ,

and z = �x. Thus we obtain for positive integers N > Q � 1 that the positive root

of Equation (4.1) is given by

y = 1 +
1

N

NX
r=1

�( 1

N
+ N�Q

N
r)

�(1 + 1

N
� Q

N
r)

(�x)r

r!

�N+1FN

2
64 1; r

N
+ 1

N(N�Q)
; : : : ; r

N
+ 1

N(N�Q)
+ N�Q�1

N�Q
; r
N

� 1

NQ
; : : : ; r

N
� 1

NQ
+ Q�1

Q
;

r+1
N
; : : : ; r+N

N
;
�

3
75

(4:4)

9



where

� = (�Q)Q(N �Q)N�Q(�x=N)N : (4:5)

We note that since � must satisfy j�j < 1 in order for each N+1FN [�] in Equation (4.4)

to converge, then Equation (4.5) yields the inequality (4.3). In particular, if jxj � 1,

then we always have j�j < 1 which will prove useful in section 6.

We remark that it is easy to show that the positive solution y of Equation (4.1)

is also given by

y�1 = 1 +
1

N

NX
r=1

�( 1

N
+ Q

N
r)

�(1 + 1

N
� N�Q

N
r)

xr

r!

�N+1FN

2
64 1; r

N
+ 1

NQ
; : : : ; r

N
+ 1

NQ
+ Q�1

Q
; r
N

� 1

N(N�Q)
; : : : ; r

N
� 1

N(N�Q)
+ N�Q�1

N�Q
;

r+1
N
; : : : ; r+N

N
;
�

3
75

where

� = (�Q)Q(N �Q)N�Q(x=N)N : (4:6)

In addition, y�1 is the positive root of zN � xzQ � 1 = 0.

Other representations for the positive root of Equation (4.1) (with Q replaced by

N �Q) may be given. For by using [2, Eqs. (9) and (10)] the trinomial equation

yN=Q + xy � 1 = 0

for integers N > Q � 1 has the positive solution

y = 1	
�

1

2
64 (Q=N;Q=N) ;

(1 +Q=N;�1 +Q=N) ;
� x

3
75

where

jxj <
N

Q

 
N

Q
� 1

!Q

N
�1

; (4:7)

thus it is easy to see that

yN + xyQ � 1 = 0

has the solution

y =

0
B@1	

�

1

2
64 (Q=N;Q=N) ;

(1 +Q=N;�1 +Q=N) ;
� x

3
75
1
CA
1=Q

:
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Note that y�1 is also the positive root of zN � xzN�Q � 1 = 0.

Further, a computation similar to that employed in deriving Equations (3.3) and

(3.5)-(3.7), but more complex in its details (so that for brevity we shall omit it here),

yields the result:

1	
�

1

2
64 (Q=N;Q=N) ;

(1 +Q=N;�1 +Q=N) ;
� x

3
75 = (�x)Q

N
�

+(�1)Q
Q

N

N�1X
r=1

(1�Q+ Q

N
r)Q�1(

�Q

N
r)r�1

(�Q
N
r)Q

xr�1

(r � 1)!

�NFN�1

2
64 1; r

N
� 1

N�Q
; r
N
; : : : ; r

N
+ N�Q�2

N�Q
; r
N
+ 1

Q
; : : : ; r

N
+ Q�1

Q
;

r+1
N
; : : : ; r+N�1

N
;
�

3
75 (4:8)

where � is given by Equation (4.6), � is de�ned by

� =

8><
>:

0 N 6= Q+ 1

1 N = Q+ 1

and x satis�es the inequality (4.7).

In particular, setting Q = 1 in Equation (4.8) we see that the positive root of the

equation

yN + xy � 1 = 0 ; N > 2

is given by

y =
N�1X
r=1

�
�r

N

�
r�1

xr�1

r! NFN�1

2
64 1; r

N
� 1

N�1
; r
N
; : : : ; r

N
+ N�3

N�1
;

r+1
N
; : : : ; r+N�1

N
;
� (N � 1)N�1(x=N)N

3
75
:
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5. CONNECTION WITH MEIJER'S G-FUNCTION

In [10] Boersma shows for positive integers ai (i = 1; : : : ; p), bi (i = 1; : : : ; q), and

k that the Fox-Wright Psi function

p	
�

q

2
64 (�1; a1=k); : : : ; (�p; ap=k) ;

(�1; b1=k); : : : ; (�q; bq=k) ;
z

3
75 = �G

k;a
a;k+b

0
B@
�
�z

k

�k aa11 : : : aapp

bb11 : : : b
bq
q

�������
�1; : : : ; �a

�1; : : : ; �k+b

1
CA

where

a =
pX
i=1

ai ; b =
qX

i=1

bi

� =
�(�1) : : :�(�q)

�(�1) : : :�(�p)

p
k

2�
k�1
2

qY
i=1

(2�)
bi�1

2 b
1

2
��i

i

pY
i=1

(2�)
ai�1

2 a
1

2
��i

i

and

�1 = 1�
�1

a1
; �2 = 1 �

�1 + 1

a1
; : : : ; �a1 = 1 �

�1 + a1 � 1

a1

�a1+1 = 1 �
�2

a2
; �a1+2 = 1 �

�2 + 1

a2
; : : : ; �a1+a2 = 1 �

�2 + a2 � 1

a2

: : :

�a1+a2+:::+ap�1+1 = 1�
�p

ap
; �a1+a2+:::+ap�1+2 = 1�

�p + 1

ap
; : : : ; �a = 1�

�p + ap � 1

ap
;

�1 = 0 ; �2 =
1

k
; : : : ; �k =

k � 1

k

�k+1 = 1 �
�1

b1
; �k+2 = 1 �

�1 + 1

b1
; : : : ; �k+b1 = 1 �

�1 + b1 � 1

b1

�k+b1+1 = 1 �
�2

b2
; �k+b1+2 = 1�

�2 + 1

b2
; : : : ; �k+b1+b2 = 1 �

�2 + b2 � 1

b2

: : :

�k+b1+b2+:::+bq�1+1 = 1�
�q

bq
; �k+b1+b2+:::+bq�1+2 = 1�

�q + 1

bq
; : : : ; �k+b = 1�

�q + bq � 1

bq
:
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In particular, for p = q = 1 we get

1	
�

1

2
64 (�; a=k) ;

(�; b=k) ;
z

3
75 = 2�

1+b�a�k
2

s
kb

a

�(�)

�(�)

a�

b�

�Gk;a
a;k+b

0
B@
�
�z

k

�k aa
bb

�������
1� �

a
; : : : ; 1� �+a�1

a

0; 1
k
; : : : ; k�1

k
; 1� �

b
; : : : ; 1� �+b�1

b

1
CA

:

(5:1)

Now comparing the latter result with Equation (3.3) we obtain for positive integers

a; b, and k:

G
k;a
a;k+b

0
B@
�
�z

k

�k aa
bb

�������
1 � �

a
; : : : ; 1� �+a�1

a

0; 1
k
; : : : ; k�1

k
; 1� �

b
; : : : ; 1 � �+b�1

b

1
CA = 2�

a�b+k�1

2

r
a

kb

�(�)

�(�)

b�

a�

�

0
B@1 + �(�)

�(�)

kX
r=1

�(� + a
k
r)

�(� + b
k
r)

zr

r!
a+1Fb+k

2
64 1; r

k
+ �

a
; : : : ; r

k
+ �+a�1

a
;

r
k
+ �

b
; : : : ; r

k
+ �+b�1

b
; r+1

k
; : : : ; r+k

k
;

�
z

k

�k aa
bb

3
75
1
CA

:

(5:2)

See [11, Ch. V], for example, for an introduction to the G-function.
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6. A PROBLEM IN INFORMATION THEORY

We consider a noiseless and memoryless communication channel [12] with symbols

s1 and s2. The time for symbol s1 (s2) to pass through the channel is the positive

integer Q(N), N > Q. We note that the case N = Q is trivial and will not be

discussed.

A transmission over the channel can be viewed as a sequence s whose terms are s1

or s2. We de�ne the length of s to be c1Q+c2N , where ci is the number of occurrences

of si in s. Let Sn, n an integer, be the set consisting of all sequences of length n,

and let jSnj denote the magnitude or cardinal number of Sn. Since there is only one

sequence of length zero (the empty sequence), jS0j = 1. There are no sequences of

negative length, so jS�jnjj = 0, n 6= 0.

The maximal amount of \information," in units of bits per unit time, that can be

transmitted over the channel is called the capacity C and is de�ned by

C = limsupn!1 log2
n

q
jSnj : (6:1)

The original de�nition was given by Shannon [12, p. 37] who used the ordinary limit,

which is not always de�ned (i.e., Q = 2, N = 4, jS2n+1j = 0). The limit superior

is always de�ned since jSnj is bounded from above by 2n. Other authors have noted

and corrected Shannon's de�nition, but the error nevertheless has been perpetuated

through much of the literature. However, in practice, the following correct result [12,

p. 37] is often used to express C.

Theorem (Shannon): The capacity is given by C = log2 y, where y is the unique

positive root of the equation zN � zN�Q � 1 = 0.

For the same reason that Shannon's de�nition is awed, his proof of the theorem,

using the asymptotic behavior of �nite di�erences, does not hold. Certainly others

have correctly proved the result, but we o�er below a novel proof using complex

analysis. We note that a similar method has been employed by Kuich [13] in his

study of the entropy of context-free languages.
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If we place the terms s1; s2, respectively, onto the end of nonempty sequences of

length n�Q;n�N , we obtain in each case a sequence of length n. Since the last term

of a nonempty sequence of length n must be either s1 or s2, we see that in general

the jSnj satisfy the recurrence relation

jSnj = jSn�Qj+ jSn�N j+ �0n

where �0n = 1 if and only if n = 0.

We de�ne the z-transform [14] of a sequence fang to be the power series
1X
n=0

anz
n.

Applying the z-transform to the above, we arrive at the formal equation

1X
n=0

jSnjz
n = zN

1X
n=0

jSnjz
n + zQ

1X
n=0

jSnjz
n + 1 :

The above result is valid for jzj less than the radius of convergence of the power series

S(z) =
1X
n=0

jSnjz
n and so we have

S(z) =
1

1 � zQ � zN
:

Since jSnj � 2n, S(z) is analytic in a neighborhood of z = 0 and so may be

expressed uniquely as a Maclaurin series. Therefore, the radius of convergence of

S(z), which is given by 1=limsupn!1
n

q
jSnj, is equal to the magnitude of the root of

smallest modulus of 1� zQ � zN = 0.

Now noting that

1� jzjQ � jzjN � j1� zQ � zN j

we see that the positive root r of 1 � zQ � zN = 0 is the root of smallest modulus;

see also [15, p. 122, Theorem (27,1)]. Thus we have

r = 1=limsupn!1
n

q
jSnj ;

and so

y = r�1 = limsupn!1
n

q
jSnj

is the positive root of zN � zN�Q � 1 = 0.
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Next, by Equation (6.1)

C = limsupn!1 log2
n

q
jSnj

= log2 limsupn!1
n

q
jSnj

= log2 y

and the theorem is proved.

Thus by setting x = �1, for example, in Equation (4.4) we have the following

Corollary: For N > Q � 1 the capacity C = C(N;Q) is given by

2C = 1 +
1

N

NX
r=1

�( 1
N
+ N�Q

N
r)

�(1 + 1

N
� Q

N
r)r!

� N+1FN

2
64 1; �(r); : : : ; �(r) + N�Q�1

N�Q
; �(r); : : : ; �(r) + Q�1

Q
;

r+1
N
; : : : ; r+N

N
;
�

3
75

where

�(r) =
r

N
+

1

N(N �Q)
; �(r) =

r

N
�

1

NQ

and

� = (�Q)Q(N �Q)N�Q=NN :

Closed forms for the capacity for 1 � Q < N � 4 are of course readily given since

polynomial equations up to the fourth degree are \solvable by radicals." Thus we

have, for example, the following:

2C(2;1) =
1 +

p
5

2

2C(3;1) =
1

3

2
41 +

 p
31 �

p
27

2

!2=3

+

 p
31 +

p
27

2

!2=3
3
5

2C(3;2) =

p
3

3

2
41 +

 p
27 �

p
23

2

!1=3

+

 p
27 +

p
23

2

!1=3
3
5

2C(4;2) =
1

2

�
2 +

p
20
�1=2

:
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In general, however, 2C(N;Q) may be expressed by means of the results previously

given in terms of a �nite number P of hypergeometric functions P+1FP [z] where

P = N or N � 1. In [16] and [17] extensive and up to date collections of reductions

for single, double, and multiple generalized hypergeometric functions are provided.
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